Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval

نویسندگان

چکیده

In this paper we investigate the numerical approximation of fractional diffusion, advection, reaction equation on a bounded interval. Recently explicit form solution to was obtained. Using boundary behavior and Jacobi polynomials, Petrov–Galerkin scheme is proposed analyzed. Numerical experiments are presented which support theoretical results, demonstrate accuracy optimal convergence method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Lattice Boltzmann method for the fractional advection-diffusion equation.

Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractiona...

متن کامل

Lattice Boltzmann method for fractional advection-diffusion equation

Mass transport such as movement of phosphorus in soils and solutes in rivers is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or super diffusion and is well described using a fractional adv...

متن کامل

An efficient differential quadrature method for fractional advection-diffusion equation

Abstract Using a set of modified cubic trigonometric B-splines as test functions, a new differential quadrature technique is proposed for the 1D and 2D transient advection-diffusion equations of order α ∈ (0, 1]. The weighted coefficients are determined via solving the system of algebraic equations with a strictly diagonally dominant tri-diagonal matrix. Then, the original equation is converted...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2021

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-020-01366-y